Biomechanics and Load in the WorkHab Functional Capacity Evaluation: An Update

Dr Carole James
School of Health Sciences,
The University of Newcastle, Australia.

FCE: 2018
Effect of Load on Biomechanics in the WorkHab FCE

• Safe Maximal Lift = maximum load that an individual is able to safely lift.

Purpose:

• To evaluate any change in biomechanics between safe minimum and safe maximum lifts during the WorkHab FCE.
Effect of Load on Biomechanics in the WorkHab FCE Method:

Method:
- Experimental laboratory based study

Sample:
- 30 healthy volunteers

Health Questionnaire, BP
- 3 min step test
- Joints marked – foam ball/ink

Wrist, Elbow, Shoulder, Hip, Knee, Ankle, Spinous processes:
- C7, T7, L3, S2

Digital recording of lifting component
- Rear Coronal + Right sagittal planes

Darfish ProSuite
- Min + Max lift
- Lift ÷ 1/3rds
- Calculation of joint angles

Data analysis:
- Descriptive + Paired t-test
Angles

Ankle Knee Hip Lumbar Spine Elbow Shoulder

89.7° 132.1° 146.6° 164.2°
Effect of Load on Biomechanics in the WorkHab FCE

Results – Overhead lift

<table>
<thead>
<tr>
<th>Joint</th>
<th>0/3</th>
<th>1/3</th>
<th>2/3</th>
<th>3/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulnar deviation</td>
<td>0.007</td>
<td>0.016</td>
<td>0.004</td>
<td><0.001</td>
</tr>
<tr>
<td>Elbow flexion</td>
<td>0.023</td>
<td>0.005</td>
<td>0.004</td>
<td>#</td>
</tr>
<tr>
<td>Shoulder</td>
<td>0.007</td>
<td>0.0036</td>
<td>#</td>
<td>0.038</td>
</tr>
<tr>
<td>Thoracic extension</td>
<td>#</td>
<td>0.05</td>
<td>#</td>
<td>0.001</td>
</tr>
<tr>
<td>Lumbar extension</td>
<td>#</td>
<td>#</td>
<td>0.027</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Effect of Load on Biomechanics in the WorkHab FCE Results – Floor to Bench Lift

Red = Floor to Bench (P values)

<table>
<thead>
<tr>
<th>Joint</th>
<th>0/3</th>
<th>1/3</th>
<th>2/3</th>
<th>3/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar flexion</td>
<td>0.001(d)</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Hip flexion</td>
<td><0.001(d)</td>
<td>0.021(a)</td>
<td><0.007(d)</td>
<td><0.001(d)</td>
</tr>
<tr>
<td>Knee flexion</td>
<td>0.027(a)</td>
<td>0.005(d)</td>
<td>#</td>
<td>0.004(d)</td>
</tr>
<tr>
<td>Ankle</td>
<td><0.001(a)</td>
<td>0.019(d)</td>
<td>0.001(d)</td>
<td><0.001(d+a)</td>
</tr>
</tbody>
</table>
Effect of Load on Biomechanics in the WorkHab FCE

Results – Bench to Shoulder Lift

<table>
<thead>
<tr>
<th>Joint</th>
<th>0/3</th>
<th>1/3</th>
<th>2/3</th>
<th>3/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar extension</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Elbow</td>
<td>0.000 (d)</td>
<td>0.008 (a)</td>
<td>#</td>
<td>0.009 (a)(d)</td>
</tr>
<tr>
<td>Shoulder</td>
<td>0.000 (d)</td>
<td>#</td>
<td>#</td>
<td>0.000 (a)</td>
</tr>
<tr>
<td>Thoracic extension</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>0.004(a)</td>
</tr>
</tbody>
</table>

Blue = Bench to Shoulder (P values)
Effect of Load on Biomechanics in the WorkHab FCE

Discussion – Overhead lift

Ulnar deviation:
- peaked at 36.16 degrees two thirds of the way through the lift
- participants reaching end range during their safe maximal lift

Elbow:
- Participants inclined to keep the load closer to their body when it was heavier by increasing elbow flexion

Shoulder:
- Shoulder flexion increased despite the overhead lift height remaining the same

Thoracic and Lumbar Spines
- Both in increased extension in parts of the maximum lift

Hip, Knee and Ankle
- Lack of findings
Effect of Load on Biomechanics in the WorkHab FCE Discussion – *Floor to bench lift*

Lumbar
- less hyperextended when lifting maximum weights.
- start point of the descending phase where weights were being lifted off the bench = significant difference

The hip
- ↑ flexion when lifting the load from the bench (0/3 point of the descending phase) and placing the load back on the bench (2/3 and 3/3 points of the ascending phase).
- more likely to be in hyperextension when lifting min vs max wgts.

Knee
- minimal changes are noticed in knee joint angle between minimum and maximum lift.

Ankle joint
- reduction in dorsiflexion when lifting maximum weights
Lumbar

- No significant difference in lumbar spine extension ascending or descending

Elbow

- ↓ flexion at 1/3 ascending
- ↑ flexion 3/3 ascending and 0/3 descending – highest point, harder to keep close to body

Shoulder

- ↑ flexion 3/3 ascending and 0/3 descending – highest point, harder to keep close to body

Thoracic

- ↑ extension at 3/3 ascending – longer lever arm
Effect of Load on Biomechanics in the WorkHab FCE Discussion

Kinematic changes important in determining SML
Elbow and shoulder flexion – OH
Hip, Ankle, lumbar – FB
Elbow and shoulder – BS

Changes in joint angles support assessors clinical reasoning and observations of SML

Consideration of handle placement with lifting
Effect of Load on Biomechanics in the WorkHab FCE

References:

